Peer reviewed publications
49. KH Schneider, BJ Goldberg, O Hasturk, X Mu, etc.,Silk fibroin, gelatin, and human placenta extracellular matrix-based composite hydrogels for 3D bioprinting and soft tissue engineering. Biomat. res., 2023, 27 (1), 117 |
48. X. Mu*, R. Amouzandeh, H. Vogts, E. Luallen, and M. Arzani. A brief review of the mechanisms and approaches of silk spinning-inspired biofabrication. Frontiers Bioeng. Biotech. 2023, 11, 1252499. |
47. W. Li, M. Wang, S. Wang, X. Wang, A. Avila, X. Kuang, X. Mu, C. E. Garciamendez, Z. Jiang, J. Manríquez, G. Tang, J. Guo, L. S. Mille, J. A. Robledo, D. Wang, F. Cheng, H. Li, R. S. Flores, Z. Zhao, C. Delavaux, Z. Wang, A. López, S. Yi, C. Zhou, A. Gómez, C. Schuurmans, G.-Y. Yang, Y. Wang, X. Zhang, X. Zhang, and Y. S. Zhang. An Adhesive Bioink toward Biofabrication under Wet Conditions. Small, 2023, 2205078 |
46. M. Xie, L. Lian, X. Mu, Z. Luo, C. E. Garciamendez-Mijares, Z. Zhang, A. López, J. Manríquez, X. Kuang, J. Wu, J. K. Sahoo, F. Z. González, G. Li, G. Tang, S. Maharjan, J. Guo, D. L. Kaplan, and Y. S. Zhang. Volumetric additive manufacturing of pristine silk-based (bio) inks. Nat. Commun., 2023, 14, 210. |
45. X. Mu*, M. D. Gerhard-Herman*, and Y. S. Zhang*. Fundamentals and Biomedical Applications of Vessels on Chips. Invited by Advanced Materials Technologies. 2023, 8, 2201778. |
2022 |
44. J. Chakraborty, X. Mu, A. Pramanick, D. L.Kaplan, and S. Ghosh*. Recent advances in bioprinting using silk protein-based bioinks. Biomaterials, 2022, 287, 121672. |
43. X. Mu, J. Yuen, J. Choi, Y. Zhang, P. Cebe, X. C. Jiang, Y. S. Zhang*, and D. L. Kaplan*. Conformation-driven strategy for resilient and functional protein materials. PNAS, 2022, 119(4), e2115523119 |
42. X. Mu, I. Constancio, Z.Y. Xia, G. Li, Y. S. Zhang*, and D. L. Kaplan*. 3D printing of high aspect-ratio monolithic proteinaceous structures with silk fibroin ink. Molecules, 2022, 27 (7), 2148 |
41. X. Mu, W. He, Victoria. A. M. Rivera, Raul A. D. D. Alba, and Y. S. Zhang,* Small Tissue Chips with Big Opportunities for Space Medicine. Life Sciences in Space Research. 2022, 35, 150 |
40. M. Wang, W. Li , J. Hao , A. Gonzales III , X. Mu, T. Ching , G. Tang , Z. Luo , C. E. Garciamendez Mijares , M. Wells , G. Niu , P. Agrawal , A. Quiñones-Hinojosa , K. Eggan, and Y. S. Zhang*. Molecularly templated and mechanically tunable bioinks facilitate biofabrication of functional volumetric soft tissues. Nature Communications, 2022, 13, 3317 |
39. M. Wang, W. L. Li, Z. Y. Luo, G. Tang, X. Mu, J. Guo, L. M. Lian, J. O. Japo, A. M. Ghaemmaghami, and Y. S. Zhang*. A Multifunctional Pore-Forming Bioink with Enhanced Anti-Bacterial and Anti-Inflammatory Properties. Biofabrication, 2022, 14 (2), 024105 |
38. Z. Zhao, J. Yan, T. Wang, Y. Ma, M. Xie, X. Mu, X. Wang, Z. Zheng, Y. Li, and G. Li. Multi-functional calotropis gigantea fabric using self-assembly silk fibroin, chitosan and nano-silver microspheres with oxygen low-temperature plasma treatment. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112488 |
37. J. Zhao, S. Song, X. Mu, S. M. Jeong, J.H. Bae. Programming mechanoluminescent behaviors of 3D printed cellular structures. Nano Energy, 2022, 103, 107825. |
36. J. L. Liao, C. Ye, J. Guo, C. Garciamendez, P. Agrawal, X. Kuang, J. Japo, Z. Wang, X. Mu, W. L. Li, T. Ching, L. S. Mille, C. Zhu, Z. Z. Gu*, and Y. S. Zhang*. Nature-Inspired 3D-Printable Non-Close-Packed Colloidal Photonic Crystals. Materials Today, 2022, 56, 29. |
2021 |
35. X. Mu, F. Agostinacchio, N. Xiang, Y. Pei, Y. Khan, C. C. Guo, P. Cebe, A. Motta, and D. L. Kaplan*. Recent Advances in 3D Printing with Protein-Based Inks. Prog. Polym. Sci. 2021, 115, 101375. |
34. Y. Pei, K. E. Jordan, N. Xiang, R. N. Parker, X. Mu, L. Zhang, Z. Feng, Y. Chen, C. M. Li, C. C. Guo, K. Y. Tang, D. L. Kaplan*. Liquid-Exfoliated Mesostructured Collagen from the Bovine Achilles Tendon as Building Blocks of Collagen Membranes. ACS Appl. Mater. Interfaces. 2021, 13 (2), 3186. |
33. J. Choi, O. Hasturk, X. Mu, J. Sahoo, and D. L. Kaplan*. Silk Hydrogels with Controllable Formation of Dityrosine, DOPA, and DOPA-Fe3+ Complexes through Chitosan Particle-Assisted Fenton Reactions. Biomacromolecules. 2021, 22 (2), 773. |
32. Y. Yao, B. Allardyce, R. Rajkhowa, D. Hegh, C. C. Guo, X. Mu, et al. Spinning regenerated silk fibers with improved toughness by plasticizing with low molecular weight silk. Biomacromolecules. 2021, 22 (2), 788. |
31. F. Agostinacchio, X. Mu, A. Motta, and D. L. Kaplan*. In Situ 3D Printing: Opportunities with Silk Inks. Trends in Biotech. 2021, 39 (7), 719. |
30. O. P. Narayan, X. Mu, O. Hasturk, and D. L. Kaplan*. Dynamically Tunable Light Responsive Silk-Elastin-Like Proteins. Acta Biomater. 2021, 121, 214. |
2020 |
29. X. Mu, J. Sahoo, P. Cebe, and D. L. Kaplan*. Photo-crosslinked silk fibroin for 3D printing. Polymers, 2020, 12, 2936. |
28. X. Mu, Y. Dai*, S. Chen, J. Leng, and X. Y. Jiang*. Microfluidic 2D Modeling and Computational Simulation of Spatial Regulation of Angiogenic Markers for Endometriotic Angiogenesis. Submitted. |
27. Y. Li, Z. Glass, M. Qiu, X. Mu, D. L. Kaplan, and Q. B. Xu*. Cholesteryl-Based Biodegradable Lipidoid Nanoparticle-Assisted Small Molecule Drug Delivery. Submitted. |
26. C. C. Guo, C. M. Li*, X. Mu, D. L. Kaplan*. Engineering Silk Materials: From Natural Spinning to Artificial Processing. Appl. Phys. Rev. 2020, 7 (1), 011313. |
25. Y. S. Wang, W. Huang, Y. Wang, X. Mu, S. J. Ling, H. Yu, W. Chen, C. C. Guo, Y. J. Yu, M. Watson, M. Li, C. M. Li*, and D. L. Kaplan*. Dual stimuli-responsive bionic biopolymer actuators with selective spatial deformation behavior. PNAS. 2020, 117 (25), 14602-14608. |
24. X. Mu, V. Fitzpatrick, and D. L. Kaplan*. From silk spinning to 3D printing: polymer manufacturing using directed hierarchical molecular assembly. Adv. Health. Mater., 2020, 1901552. |
23. C. C. Guo, C. M. Li*, H. Vu, P. Hanna, A. Lechtig, Y. Qiu, X. Mu, S. J. Ling, A. Nazarian, S. Lin, and D. L. Kaplan*. Thermoplastic moulding of regenerated silk. Nat. Mater., 2020, 19 (1), 102-108. Highlighted in ScienceDaily |
22. X. Mu, Y. Wang, C. C. Guo, Y. Li, S. J. Ling, W. Huang, P. Cebe, H. Hsu, F. D. Ferrari, X. Jiang, Q. Xu, A. Balduini, F. G. Omenetto, and D. L. Kaplan*. 3D printing of silk protein structures by aqueous solvent-directed molecular assembly. Macromol. Biosci., 2020, 20, 1900191. Highlighted in Best of Macromolecular Journals 2020 Edition |
2019 |
21. H. Sun, C. W. Chan, Y. Wang, X. Yao, X. Mu*, X. Lu, J. Zhou, Z. Cai, and K. N. Ren*. Reliable and reusable whole polypropylene plastic microfluidic devices for a rapid, low-cost antimicrobial susceptibility test. Lab Chip, 2019, 19 (17), 2915-2924. |
20. M. A. Heinrich, W. Liu, A. Jimenez, J. Yang, A. Akpek, X. Liu, Q. Pi, X. Mu, et al. Bioprinting: 3D bioprinting: from benches to translational applications. Small, 2019, 15, 1970126. |
2018 |
19. S. J. Ling, Q. Wang, D. Zhang, Y. Y. Zhang, X. Mu, D. L. Kaplan*, and M. J. Buehler*. Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. Adv. Funct. Mater., 2018, 28, 1705291. |
18. L. Tozzi, P.-A. Laurent, C. A. D. Buduo, X. Mu, et al. Multi-channel silk sponge mimicking bone marrow vascular niche for platelet production. Biomaterials, 2018, 178, 122-133. |
17. L. D. Ma, Y. T. Wang, J. Wang, J. L. Wu, X. Meng, P. Hu, X. Mu, Q. L. Liang, and G. A. Luo*. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip, 2018, 18, 2547-2562. |
16. K. Zhu, N. Chen, X. Liu, X. Mu, et al. A general strategy for extrusion bioprinting of bio-macromolecular bioinks through alginate-templated dual-stage crosslinking. Macromol. Biosci., 2018, 18, 1800127. |
Before 2017 |
15. M. McGill, J. Coburn, B. Partlow, X. Mu, and D. L. Kaplan*. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design. Acta Biomater., 2017, 63, 76-84. |
14. X. Mu*, X. Xin, C. Fan, X. Li, X. Tian*, K. F. Xu, and Z. Zheng*. A paper-based skin patch for the diagnostic screening of cystic fibrosis. Chem. Commun., 2015, 51, 6365-6368. Highlighted in Chemical Communications Blog, American Association of Clinical Chemistry (invited blog), and BioNews Texas |
13. J. Wang, W. Lu, C. Tang, Y. Liu, J. Sun, X. Mu, et al. label-free isolation and mRNA detection of circulating tumor cells from patients with metastatic lung cancer for disease diagnosis and monitoring therapeutic efficacy. Anal. Chem., 2015, 87, 11893-11900. |
12. X. Mu*, L. Zhang, S. Chang, W. Cui, and Z. Zheng*. multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis c virus infection. Anal. Chem., 2014, 86, 5338-5344. Highlighted in American Chemical Society, The Analytical Scientist (invited editorial), ScienceDaily, phys.org, eurekAlert!, RedOrbit and Innovationtoronto |
11. X. Mu, Q. L. Liang*, J. Zhou, P. Hu, K. N. Ren, Y. Wang, Z. Zheng*, and G. A. Luo*. Oil–water biphasic parallel flow for the precise patterning of metals and cells. Biomed. Microdevices, 2014, 16, 245-253. |
10. X. Mu, W. Zheng, J. Sun, W. Zhang*, and X. Y. Jiang*. Microfluidics for manipulating cells. Small, 2013, 9, 9-21. |
9. X. Mu, W. Zheng, L. Xiao, W. Zhang* and X. Y. Jiang*. Engineering 3D vascular network in hydrogel for mimicking a nephron. Lab Chip, 2013, 13(8), 1612-1618. |
8. Z. L. Chen, Y. Dai, Z. Dong, M. Li, X. Mu, R. Zhang, Z. Wang, W. Zhang, J. Lang, J. Leng* and X. Y. Jiang*. Co-cultured endometrial stromal cells and peritoneal mesothelial cells for an in vitro model of endometriosis. Integr. Biol., 2012, 4, 1090-1095. |
7. T. He, Q. L. Liang*, K. Zhang, X. Mu, T. Luo, Y. Wang, and G. A. Luo*. A modified microfluidic chip for fabrication of paclitaxel-loaded poly(l-lactic acid) microspheres. Microfluid. Nanofluid., 2011, 10, 1289-1298. |
6. X. Mu, Q. L. Liang*, P. Hu, K. N. Ren, Y. Wang, and G. A. Luo*. A selectively modified microfluidic chip for solvent extraction of radix salvia miltiorrhiza using three-phase laminar flow to provide double liquid-liquid interface area. Microfluid. Nanofluid., 2010, 9, 365-373. |
5. X. Mu, Q. L. Liang*, P. Hu, K. N. Ren, Y. Wang, and G. A. Luo*. Laminar flow used as "liquid etching mask" in wet chemical etching to generate glass microstructures with an improved aspect ratio. Lab Chip, 2009, 9, 1994-1996. Highlighted in Nature Materials |
4. X. Mu, Q. L. Liang*, P. Hu, B. Yao, K. N. Ren, Y. Wang, and G. A. Luo*. Prototypical nonelectrochemical method for surface regeneration of an integrated electrode in a PDMS microfluidic chip. Anal. Lett., 2009, 42, 1986-1996. |
3. K. N. Ren, Q. L. Liang*, X. Mu, G. A. Luo*, and Y. Wang. Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source. Lab Chip, 2009, 9, 733-736. |
2. K. Zhang, Q. L. Liang*, S. Ma, X. Mu, P. Hu, Y. Wang, and G. A. Luo*. On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force. Lab Chip, 2009, 9, 2992-2999. |
1. X. Mu, P. Hu, G. A. Luo*, and B. Yao. Development of microfluidic chip in clinical diagnosis. J. Instrum. Anal., 2007, 26, 587-591. |
Books
1. X. Mu and Y. S. Zhang. Chapter 3, The fabrication and application of paper-based microfluidics, in the Book of Diagnostic Devices with Microfluidics, 45-64, CRC Press, July 3, 2017. |
2. X. Mu and Y. S. Zhang. Chapter 6, Tumor-on-Chips models for screening cancer immunotherapy, in the Book of Engineering Technologies and Clinical Translation, 155-195, Volume 3, Academic Press, Jan 1, 2022. |
3. Z. Y. Luo, X. Mu, and Y. S. Zhang. Biomaterials for 3D bioprinting, Elsevier, est. Jun 2022. |
Patents
1. D. L. Kaplan and X. Mu. Systems and methods for 3D printing of proteins (US17/269582 and WO2020041381A1). |
2. Z. Zheng and X. Mu. A paper-based microfluidic chip for the detection of human antibodies against hepatitis C virus (CN103792354B). |
3. Z. Zheng and X. Mu. A portable paper-based microfluidic chip for visual detection of chloride in sweat (PCT/CN2013/077471, WO2014194537A1, and EP3006937B1). |
4. X. Y. Jiang, X. Mu, et al. The fabrication and applications of hydrogel materials with microchannels (CN 103357072B). |
Writing organizes and clarifies our thoughts.
Writing is how we think our way into a subject and make it our own.
Writing enables us to find out what we know—and what we don’t know—about whatever we’re trying to learn.
William Zinsser, Writing to Learn (1988)